II 4-Manifolds and Surgery
A. Handlebody Theory and Morse Function s an n-dimensional k-handle is

$$
h^{k}=D^{k} \times D^{n-k}
$$

set

$$
\begin{aligned}
& \partial-h^{k}=\left(\partial D^{k}\right) \times D^{n-k} \quad \text { attaching region } \\
& \partial+h^{k}=D^{k} \times \partial D^{n-k} \quad \partial \\
& A^{k}=\partial D^{k} \times\left\{_{0}\right\} \quad \text { attaching sphere } \\
& C^{k}=D^{k} \times\{0\} \quad \text { core } \\
& K^{k}=\{0\} \times D^{n-k} \quad \text { co-core } \\
& B^{k}=\{0\} \times \partial 0^{n-k} \quad \text { belt sphere }
\end{aligned}
$$

M
given an n-manifold M and as embedding

$$
\phi: \partial_{-} h^{k} \rightarrow \partial M
$$

we attach h^{k} to M by forming the identification space

$$
M \Perp h^{k} /\left(x \in \partial_{-} h^{k}\right) \sim(\phi(x) \in \partial M)
$$

eeg. dimension 2 :

$$
\begin{aligned}
& \text { k=1: } \quad 1 / 11 \quad 2-h^{\prime}=1 \\
& \text { So } \underset{\text { 1-handle }}{\text { attach }} \underset{0}{\text { En= }}
\end{aligned}
$$

$k=2$:
$\partial-h^{2}=\bigcirc$ so

Remark:

1) In all dimensions, attaching a O-handle is just taking a disjoint union with D^{n}
2) In all dimensions n, attaching an n-handle is just "capping off" an S^{n-1} boundary component
divienscon 3:

$$
\begin{aligned}
& k=0: \\
& k=1: 2 h^{\prime}=(2) \\
& k=2: \\
& k=3:
\end{aligned}
$$

Remark: Note when attaching a handle one has a manifold with "corners", there is a standard way to smooth them out (see Wall "Differential Topology")
exercise:

1) If $\phi_{0}, \phi_{1}: \partial_{-} h^{k} \rightarrow \partial M$ are isotopic, then the result of attaching a handle to Mvia ϕ_{0} is diffeomorphic to attaching a handle to M via ϕ_{1}
2) the isotopy class of $\phi: \partial, h^{k} \rightarrow M$ is determined by
3) isotopy class of $\left.\phi\right|_{A^{k}} \quad\left(A^{k}=S^{k-1} \times\{0\}\right)$
(ie. a S^{h-1} knot in ∂M)
4) the "framing" of the normal bundle of $\phi\left(A^{k}\right)$ given by $\phi l_{\partial_{-}} L^{k}=A^{k} \times D^{n-k}$ ie. an identification of $\nu\left(\phi\left(A^{k}\right)\right)$
with $S^{h-1} \times D^{n-k}$
egg. notice that $S^{\prime} \times D^{2}$ has an integers worth of framing s

$$
\begin{aligned}
& S^{\prime} \times D^{2} \xrightarrow{\phi_{n}} S^{\prime} \times D^{2} \\
& \left(\phi_{1}(r, \theta)\right) \longmapsto(\phi,(r, \theta+n \phi))
\end{aligned}
$$

(-) $\xrightarrow{\phi_{2}}$

3) more generally show the framings on a k-diniensional sphere in ζ^{n} is in one-to-one correspondence with $\pi_{k}(O(n-k))$

T dion of normal bundle fiber
So we see to attack an n-dimensional k-handle, one must specify

1) an $s^{k-1} k n o t$ in ∂M and
2) "elf" of $\pi_{k-1}(O(n-k))$
$\tau_{\text {really to get such an element }}$ need a canonical "zero" framing

A handle decomposition of an 1-manifold M is a sequence of manifolds $M_{0}, M_{1}, \ldots, M_{l}$ such that

1) $M_{0}=\varnothing$ and $M_{e} \cong M$
2) M_{1+1} is obtained from M_{i} by a k-handle attachment for some
example: handle decompositions of S^{2}
3)

2)

Th $\mathrm{m}:$
Any smooth compact manifold has a handle decomposition
a brief sketch of the proof goes as follows recall a Morse function

$$
f: M \rightarrow \mathbb{R}
$$

is a function all of whose critical posits are
non-degenenate, that is if $p \in M$ is a critical point, then in local coordinates about p, the matrix

$$
\left(\frac{\partial^{2} f}{\partial x_{1} \partial x_{j}}(p)\right)
$$

is invertable
exercise: 1) Show p is a non-degenenate critical point of $f \Leftrightarrow d f$ is transverse to the zero section of $T^{*} M$ at $d f(p)$
2) Every function $f: M \rightarrow \mathbb{R}$ can be perturbed to be a Morse function
3) If ρ is a non-degenerate critical point of $f: M \rightarrow \mathbb{R}$ then \exists coordmaites about p such that f takes the form
Fundamental lemma of

$$
f\left(x_{1}, \ldots, x_{n}\right)=f(p)-x_{1}^{2}-\ldots x_{k}^{2}+x_{k+1}^{2}+\ldots+x_{n}^{2}
$$ Morse theory

k is called the index of p
Main Th ${ }^{m}$ of Morse theory:
let $f: M \rightarrow \mathbb{R}$ be a Morse function
I) if $[a, b]$ contains no critical values then

$$
f^{-1}([a, b]) \cong f^{-1}(a) \times[a, b]
$$

$\tau_{\text {manifold since a reg. value }}$
II) if \exists ! critical point $p \in f^{-1}([a, b])$ s.t. $f(p) \in(a, b)$
then $f^{-1}([a, b])$ is obtained from $f^{-1}(a) \times[a, a+\varepsilon]$ by attaching a k-handle to $f^{-1}(a) \times\{a+\varepsilon\}$
example:

Remark: handle decomposition theorem clearly follows
Idea of Proof of Main T^{m} :
I) let $\Phi_{t}: \mu \rightarrow \mu$ be the (normalized) gradient flow of f then $f^{-1}(a) \times[a, b] \rightarrow M$

$$
(p, t) \longmapsto \Phi_{t-a}(p)
$$

is an embedding on to $f^{-1}([a, b])$
II) let U be unbid about p where f has the form as in exencis 3 above. In U we see

exercise: finish proof of III

Facts (erencises):

1) In a handle decomposition, can assume handles are attached in order of non-decreasing index
Hint: if h^{k} attached after h^{l} and $k \leq l$, show you can make the attaching sphere of h^{k} disjoint from the belt sphere of h^{l}
2) if the attaching sphere of h^{k+1} intersects the belt sphere of h^{k} exactly once and ransuensely, then Mu $h^{k} u h^{k+1} \cong M$
3) if M is connected then it has a handle decomp. with only one 0 -handle

4) if $f: M^{n} \rightarrow \mathbb{R}$ is Morse then so is - f and index k for $f \longleftrightarrow$ index $n-k$ for $-f$ (so if $\partial M=\varnothing$ then can assume only one n-handle and if $\partial M \neq \varnothing$ then can assume no n-handles)
example: M a closed, connected, oriented 3-manifold $f: M^{3} \rightarrow \mathbb{R}$ a Morse function with one index 0 critical point one index 3 " "

$\mathbb{R}^{\mathbb{R}} \quad f^{-1}(c)=$ surface of genus g
note: $\left.M_{c}=f^{-1}(-\infty, c]\right)=0$-handle $\cup 1$-handles
is a "handlebody" in the sense of Section I:
M_{c} I co-cores of 1 -handles
11

$$
0 \text {-handle (=3 ball) }
$$

so follows from lemma I. 1

Similarly $\overline{M-M_{c}}=f^{-1}(\{(, \infty))$

$$
\begin{aligned}
& =(-f)^{-1}((-\infty,-c]) \\
& =\text { handle body too }
\end{aligned}
$$

so Σ is a Heegaard splitting!
New proof of Th m I. 3 using Morse Theory.

B 4-manifolds
X a connected 4-manifold
so X has a handlebody structure with one 0-handle so other handles attacked to $S^{3}=\partial\left(D^{4}\right)=\mathbb{R}^{3} \cup\{\infty\}$ that is, we can draw them in \mathbb{R}^{3}

1-hande: $h^{\prime}=D^{\prime} \times D^{2}$ attaching region $\partial D^{\prime} \times D^{2}=s^{0} \times D^{2}$
framing $\epsilon \pi_{0}(O(3)) \cong \mathbb{Z} / 2$
exercise: one of these framings gives a non-orientable manifold
so if X onentable affaching h^{\prime} determined by image of $2-h^{\prime}$

(If walking around boundary and walk in one D^{3} will pop out other one
in 3D

now $h^{0} \cup h^{\prime}=D^{4}{\underset{\sim}{\sim}}\left(D^{\prime} \times D^{3}\right)=\left(D^{1} \times D^{3}\right){\underset{\sim}{u}}_{\sim}\left(D^{1} \times D^{3}\right)$ glue ∂h^{1} to $\partial D^{\prime} \times D^{3}$

$$
=S^{1} \times D^{3}
$$

and $h^{\circ} \cup m h^{1}=G_{m} S^{1} \times D^{3}$
where G is boundary sum
that is, given X_{1} and X_{2}
let D_{1}, D_{2} be $D^{3 \prime s}$ is ∂X_{1} and ∂X_{2}

$$
X_{1} G X_{2}=X_{1} U_{D_{1}=D_{2}} X_{2}
$$

2-handles: $h^{2}=D^{2} \times D^{2}$ attacking region $\partial_{-} h^{2}=S^{1} \times D^{2}$
framing in $\pi(S O / 2)) \cong \mathbb{Z}$
so we need to specify o knot K in $\partial((0.4) \cup(1-4) s)$
and a framing on K
Cidentified with Z using a Seifert surface for K if K is nul(-homologous)
example:

what is $?$

0-h $\vee 2-4$
11
$\left(D^{2} \times D^{2}\right) \cup\left(D^{2} \cup D^{2}\right)$
glue $A=S^{1} \times D^{2}$ in $2^{\text {nd }}$ factor to $\underbrace{s^{\prime} \times D^{2} \text { in } 1^{\text {st }} \text { factor }}_{\text {mhd of unknot in }}$ $2 D^{4}$
if one glues $S^{\prime} \times D^{2} \rightarrow S^{\prime} \times D^{2}$ by identity then get $S^{2} \times D^{2}$
exercise: in general get D^{2}-bundle over S^{2} an the Euler class of $\bigcirc n$ is n

Cecal D^{2}-bundles oven S^{2} are in one-to-one correspondence with \mathbb{Z} via Euler class)
note: $\partial(0-h \cup 1-h)=S^{\prime} \times S^{2}$ and

$$
\partial\left(0^{0}\right)=s^{1} \times s^{2}
$$

so if we are only intanested in ∂x then can replace
$\theta \theta$ with 0°
exencré: more generally if you see

this has same boundary as

\therefore if $M^{3}=\partial X^{4}$ and $X^{4}=0-4 v(1-4)^{\prime} s v(2-4) s$
then $\exists X^{\prime}$ a 4 -manifold with only 0 -and 2 -handles such that $\partial X^{\prime}=M$

Fact: if a 4 -mid is closed then there is a unique way to attach 3- and 4-handles
to get the closed manifolds
so we don't need to keep track of them!
note: if X is a 4 -manifold such that $\partial X=M^{3}$ then from above we can assume X has no 4-handles and we can replace 1-handles with 2-handles, moreover by "turning upside down " replace f by $-f$) can replace 3-handles by 2 -handles too.
That is if $M=\partial$ (4 -manifold) then M is the boundary of a 4 -manifold with only a 0 -handle and 2-handles
what happens to the boundary of an n-manifold when you attach a k-handle?
lemma 1:
if $X^{\prime}=X \cup k$-handle then $\partial x^{\prime}=\partial x$ with a a bud of the attaching sphere removed and $\partial_{+} h^{k}=D^{k} \times s^{n-h-1}$ glued in via attaching map restricted to $\partial\left(\partial_{-} h^{k}\right)=\partial\left(\partial_{+} h^{k}\right)$ (i se remove $S^{k-1} \times D^{n-h}$ reqlue $D^{k} \times s^{n-k-1}$ this is called
surgery on the s^{k-1} in $2 x$)
If $\operatorname{din} x=4$ and h^{2} is attached along an $s^{\prime} c \partial X$ with framing n, then $\partial x^{\prime}=\partial x$ after n-framed Dehn surgery on k
example: in 3D attach a I-handle

note the image of $\partial_{-} h^{\prime}$ becomes part of the interior of x^{\prime} and we glue a copy oh $\partial+h^{\prime}$ to $\left.\partial x-\ln 6 h h^{\prime} \partial_{2} h^{\prime}\right)$ a long $\partial\left(\partial_{+} h^{\prime}\right)=\partial D^{\prime} \times \partial D^{2}=s^{0} \times s^{\prime}$

Proof: assume h^{k} is glued via $\phi: \partial h^{k} \rightarrow \partial x$
then as above $\phi\left(\partial h^{k}\right)=$ (ubhd attacking sphere) is
removed from ∂X (it bewnes part of the mithioir)
and we add $\partial+h^{k}$ to get ∂X^{\prime}
we glue $\partial_{+} h^{k}=D^{k} \times \partial D^{n-h}=D^{k} \times 5^{n-k-1}$ to $\partial x-\phi\left(\partial-h^{k}\right)$
via $\left.\phi\right|_{\partial\left(\partial+h^{k}\right)}: S^{k-1} \times s^{n-k-1} \rightarrow \overline{\partial x-\phi\left(\partial h^{k}\right)}$
exercise: convince yourself of last part of lemma
(hopefully clear)
note: from Section I and I we know any oriented 3-manifold is obtained from S^{3} by Dehu surgery on a link with integer coefficients, thus it is the boundary of a 4 -manifold! We can prove this indepentent of SectzanI and therefore give an altunate proof that 3 -mfds can be obtained from S^{3} via Dehn surgery! (Wallace)

Th ${ }^{\mathrm{m}}$ 2:
any closed orientable 3-manifold is the boundary of a 4 -manifold built with only a 0 -handle an 2 -handles (\Rightarrow obtacied from S^{3} via Dehn surgery)

Proof: the Whitney immenscoin theorem say an orientable n-maritobl immerses

$$
\text { in } S^{2 n-1}
$$

let $i: M^{3} \rightarrow S^{5}$ be an immersion in S^{5} we can isotop i so it is self-transuerse ie the double porits of $i(M)$ are I γ_{i}, each γ_{i} an S^{\prime} in $i^{\prime}(\mu)$
Claim: 1) \exists a 4 -manifold X such that $\partial X=M V-M^{\prime}$ where M^{\prime} is embedded in \mathbb{R}^{5}
2) If M^{\prime} is embedded in \mathbb{R}^{5} then there is an embedded "Seifert submanifuld" W in \mathbb{R}^{5} such that $\partial \omega=M^{\prime}$
given claims $M=\partial(\underbrace{X \cup W^{\prime}})$ and from above X^{\prime} can be assumed to have a O-handle and 2-handles
\therefore lemma $\Rightarrow \partial X^{\prime}=\mu$ is obtained by surgery on a link in S^{3}.
for Claim 1: consider the double points of $i: M \rightarrow S^{5}$ if $l^{-1}\left(\Gamma_{1}\right)=\gamma_{2} \vee \gamma_{1}{ }^{\prime}$ is disconnected
then $N\left(\gamma_{i}\right)=\gamma_{i} \times D^{2}$ and

$$
N\left(\gamma_{2}^{\prime}\right)=\gamma_{1}^{\prime} \times D^{2} \quad N\left(\gamma_{1}\right)
$$

for each $p \in \gamma_{i}$ replace 2 disks in D^{4} with
an annulus $A=s^{\prime} \times[1,2]$
with $A \times\{1\}=\gamma_{1} \times \partial D^{2}$ in $N\left(\gamma_{1}\right)$
and $A \times\{2\}=\gamma_{1} \times \partial D^{2}$ in $N\left(\gamma_{1}{ }^{\prime}\right)$

So let $M^{\prime}=\overline{M-\left(N\left(\gamma \cup \gamma^{\prime}\right)\right)} \cup\left(A \times S^{\prime}\right)$
note: $\mu^{\prime} \rightarrow S^{5}$ has one less double point set and $X=\mu \times[0,0] \cup\left(D^{2} \times[1,2] \times s^{\prime}\right)$ where $D^{2} \times\left\{1 \times s^{\prime}\right.$ glued to $N\left(\gamma^{\prime}\right)$ and $D^{2} \times\{2\} \times S^{\prime \prime}$ " $N\left(\gamma^{4}\right)$ in $\mu \times\{1\}$ then $\partial x=-\mu \cup \mu^{\prime}$
exencise: if $i^{-1}\left(\Gamma_{1}\right)$ is connected give a similar construction
for Claim 2: this follows from
Th ${ }^{\text {m }} 3$:
if M is a connected, closed, oriented M-manifold smoothly embedded in an oriented W^{m+2} and

$$
[M]=0 \text { in } H_{m}(w)
$$

then \exists an embedded $\Sigma^{m+1} \subset W^{m+2}$ s.t.

$$
\partial \Sigma=M
$$

ultimate generalization of a "Seifert surface"!
for this we need
lemma 4 : \qquad
if M is a connected, closed, oriented m-manifold smoothly embedded in an oriented W^{m+2} and

$$
[M]=0 \text { in } H_{m}(w)
$$

then it has a trivial normal bundle in particular M has a nbld $\cong M \times D^{2}$

Proof: recall the Euler class of an oriented vector bundle E
M^{m} with fiber \mathbb{R}^{k} is the Poricaré dual $e(E)$ of $\left[\sigma^{-1}(\right.$ zen section $\left.)\right] \in H_{m-k}(M)$
where $\sigma: M \rightarrow E$ is a section that is transuense to the zero section
exercise:

1) show this is well-defiried re e vidependent of σ.
2) If $k=2$, then $e(E)=0 \Leftrightarrow E$ has a non-zero section
Warning: Not true in general! only get (\Leftrightarrow)
Hint: $e(E)$ is the "obstruction" to E having a non-zho section oven the k-skeleton but for $k=2$ no other obstructions
now since the normal bundle $\begin{array}{r}\mathbb{R}^{2} \rightarrow \nu(\mu) \\ \downarrow \pi \\ M\end{array}$ an orientable bundle (since M and W are oriented) it will be trivial if \exists a nonzero section (extencise)
we build a rector bundle $\{$ over W with fiber dimension 2 and $3 l_{M}=\nu(M)$ such that $e(\zeta)=0 \quad \therefore e(\nu(n))=0$ and done by exencise above.
let $\eta=\pi^{*} \nu(M)$ be the pull-back of $\nu(M)$ to $\nu(M)$

recall $\pi^{*}(M)=\{(a, b) \in \nu(M) \times \nu(M): \pi(a)=\pi(b)\}$
define $s: \nu(M) \rightarrow \eta: e \mapsto(e, e)$
identify M with the zero section $Z \subset V(M)$
note $S \neq 0$ on $\nu(M)-Z$
so η is trivial on $v(n)-z$
from differential topology we know that $M \subset W$ has a ubhd $N(M)$ diffeomorphic to a reid of Z in $V(M)$
so define $\{$ on $N(M)$ to be η and extend to rest of W via the trivial bundle now s extends to $\}$ to be nonzew except on $M \subset N(M)(\cong Z \subset \nu(M))$
so $e(3)=$ Poincaré Dual $\left(\left[s^{-1}(\right.\right.$ zero section $\left.\left.)\right]\right)$

$$
=[M]=0
$$

since $\nu(M)=\left\{l_{M}\right.$ (exencie)
we have $e(\nu(M))$ has a nonzero section

For Th ${ }^{\text {m }} 3$ proof need simple case of
Brown Representation $T_{h}{ }^{m}$:
for a $C W$ complex $H^{n}(X ; \mathbb{Z}) \cong[X, K(\mathbb{Z}, n)]$
$K(z, n)$ is a space such that

$$
\pi_{k}(k(z, n)) \cong \begin{cases}\mathbb{Z} & k=n \\ 0 & \text { otherwise }\end{cases}
$$

eg. $K(\mathbb{Z}, 1)=S^{1}$ so

$$
H^{\prime}(x) \cong\left[x, 5^{\prime}\right]
$$

Proof of $T_{h}-3$:
let $N(M)$ be a tubular ubld of M in W by lemma $4, N(M) \cong M \times D^{2}$
but there might be many such identifications
exencse: show the identifications are in one-to-one correspondence with $H^{\prime}(M)$
let $S^{\prime}=\partial\left(\{p\} \times D^{2}\right)$ for any $p \in M$
no power of $S^{\prime} C(W-N(M))$ is trivial in $H_{2}(W-N(M))$
since if it were there would be a 2-chain C sit. $\partial C=n s^{\prime}$
So $\left(u n\left(\{\rho\} \times D^{2}\right)\right.$ is a closed 2 -chain and gives a homology class in $H_{2}(\omega)$ that intersects M, n times but $[M]=0$ so must intersect everything zero times
$\therefore\left[S^{\prime}\right]$ generates a $\mathbb{Z} \subset H_{1}(W-N(M))$ let $\alpha \in H^{\prime}(W-N(M))$ be its dual now the inclusions

$$
S^{\prime} \hookrightarrow \partial(W-N(M)) \hookrightarrow W-N(M)
$$

induce

$$
\begin{aligned}
& H^{\prime}(W-N(M)) \xrightarrow{J^{*}} H^{\prime}\left(\partial(W-N(M)) \xrightarrow{\imath^{*}} H^{\prime}\left(S^{\prime}\right)\right. \\
& \text { Sql } \\
& {\left[\omega-N(M) ; S^{\prime}\right] \underset{\uparrow}{\longrightarrow}\left[\partial(\omega-N(M)) ; S^{\prime}\right] \underset{\uparrow}{\longrightarrow}\left[S^{\prime} ; S^{\prime}\right]} \\
& \text { restriction } \\
& \text { restriction }
\end{aligned}
$$

$J^{*} \alpha$ is represented by a map

$$
f: \partial(w-N(N)) \rightarrow s^{\prime}
$$

exercise: one can choose

$$
h: \partial(w-N(M)) \rightarrow M \times s^{\prime}
$$

such that

$$
\begin{aligned}
& \partial(W, N(M)) \xrightarrow{f} S^{\prime} \\
& M \times S^{\prime} \xrightarrow[\text { project }]{\sim}
\end{aligned}
$$

but now α is represented by $F:(\omega-N(M)) \rightarrow S^{\prime}$ sit. $F l_{\partial}=f=$ projection
let $x \in S^{\prime}$ be a regular value
$\Sigma=F^{-1}(x)$ is a $(m+1)$-submanifold of $(W-N(M)) \subset W$ and $\partial \Sigma=M x\{x\}$
T isotopic to M so can isotope Σ

$$
\text { st. } \partial \Sigma=M
$$

C. Homology of 3-and 4-manifolds
lemma 5:
If $X^{4}=(0$-handle) $u k$ (2 -handles) then

$$
H_{0}(x) \cong \mathbb{Z}, H_{1}(x)=0 \text { and }
$$

1) $H_{2}(x) \cong \oplus_{k} \notin$ generated by 2 -handles specifically: 2 -handles attached to $L_{1} \cup \ldots u L_{h}$, let τ_{1} be a seifent surface for L_{k} pushed into interior $\left(B^{4}\right)$ and $A_{1}=\Sigma_{2} \cup C_{i}$ where C_{2} is the core of 2 -handle
2) $H_{z}(x, \partial x) \cong \oplus_{k} \mathbb{Z}$ generated by the co-cores of the 2 -handles

Proof:

1) let $X_{i}=\left(0\right.$-handles) $\cup 1^{\text {st }} i$ (2 -handles)
note $x_{1+1} / x_{i} \simeq s^{2}$
so

$$
\therefore H_{2}\left(x_{n+1}\right) \cong H_{2}\left(x_{1}\right) \oplus \mathbb{Z}_{\text {gen by }} A_{r+1}
$$

so inductively $H_{2}(X)$ is as clammed.
2) since $H_{1}(x)=0$, Universal Coefficients gives

$$
H^{2}(x) \cong H_{2}(x)
$$

and Poincaré duality gives $H_{2}(x, \partial x) \cong H^{2}(x) \cong \oplus_{k} \mathbb{Z}$ note: if B_{i} is the cocore to $2^{\text {th }} 2$-handle then $\left[B_{1}\right] \in H_{2}(X, 2 x)$ and

$$
B_{i} \cdot A_{v}=\delta_{i j}
$$

so B_{i} gives elf $H^{2}(x) \cong \operatorname{Hom}\left(H_{2}(x), Z\right)$
that is deal to A_{i}.
2e. B_{2} 's generate $H_{2}(x, \partial x)$
Theorem 6:
let $L_{1} \cup \ldots \cup L_{k}$ be a link in S^{3} and X be the 4 -mfd obtained from B^{4} by attaching 2 - handles to B^{4} along the L_{i} with framing n_{i}
let $a_{i j}= \begin{cases}1 k\left(L_{2}, L_{j}\right) & i \neq j \\ n_{i} & i=j\end{cases}$
the matrix $A=\left(a_{i j}\right)$ is called the linking matrix we have
where we use A_{i} as a basis for $H_{2}(X)$ and

$$
B_{1} . \quad \text { " } H_{2}(x, \partial x)
$$

Thus if μ_{i} is the meridian to L_{i} then we have a presentation for the homology of aX:

$$
H_{1}(\partial x) \cong\left\langle\mu_{1}, \ldots, \mu_{n} \mid a_{11} \mu_{1}+a_{12} \mu_{2}+\ldots, \ldots\right\rangle
$$

example:
1)

you can compute $\operatorname{det} A=1$
so A is an isomorphism $\oplus_{k} \mathbb{E} \rightarrow \oplus_{k} \mathbb{Z}$
and so $H_{1}(2 x)=1$
2)
()$^{-1} \quad A=[1]$ so $H_{1}(\partial x)=1$
(of course ∂ (i 1) \& 2) are same as we showed eorl(ci)
3) if $M^{3}=n$-surgery on a knot then

$$
H_{l}(M)=\mathbb{Z}_{n}
$$

exercise:

1) if $X=C^{\circ}$, then see directly that any loop in ∂X is null-homologous in ∂X
2) let $x=\underbrace{n}$ what is $H_{1}(\partial M)$?

Proof: we first note that

$$
H_{2}(x, \partial x) \rightarrow H_{1}(\partial x)
$$

is just a boundary mg s so $\partial\left(B_{1}\right)=\mu_{i}$, so μ_{2} generate $H_{1}(\partial x)$ now $H_{2}(x) \rightarrow H_{2}(x, \partial x)$ is just inclusion so we need to write the A_{i} in terms of the B_{i} recall $A_{2}=\Sigma_{2} \cup$ core

push core to ∂x

anything in ∂X "disapeors" in $H_{2}(X, \partial X)$
so we just have Σ_{i} with its boundary linking L_{i}, n_{i} times in S^{3}

now push Σ_{i} into ∂X
can do this except for parts where some other component $L_{j} \cap \Sigma_{i}$ and where $L_{i} \cap \Sigma_{i}$ these are precisely menidian curves bounding B_{i} in X so $A_{2} \longmapsto a_{1 i} B_{1}+a_{2 i} B_{2}+\ldots+a_{k i} B_{k}$

We now study $H_{2}(X)$ when X is closed
Recall $H_{2}(x) \cong H^{2}(x)$ (if $H_{1}(x)$ has no torsion)
and $H^{2}(X)$ has a cup-product pairing

$$
H^{2}(x) x H^{2}(x) \rightarrow H^{4}(x) \cong \mathbb{Z}
$$

we interpenate this geometrically
lemma 7:
:
If X is a closed oriented 4 -manifold then any $a \in H_{2}(X)$ is represented by an oriented surface $\tau<X$
zee. $[\Sigma]=a$
Proof: $H_{2}(x) \cong H^{2}(x) \cong[X ; K(z, z)]$
Brown
now $K(\nVdash, 2)=\mathbb{C} P^{\infty}=0$-cell 42 -cell $\cup 4$-cell...

So any map $f: X \rightarrow \mathbb{C P}^{\infty}$ is homotopic to

$$
f: X \rightarrow \mathbb{C} P^{2}
$$

(in deed, $f(x) \subset \mathbb{C} P^{n}$ some n since it is compact now make f transverse to center of $2 n$-cell thus f disjoint from it if $n>2$, and so f can be homotoped of of it, ie. into εP^{n-1}
so inductively get $\left.f(x) \subset ष \rho^{2}\right)$
$H_{2}\left(C P^{2}\right) \cong \mathbb{Z}$ generated by $\mathbb{C} P^{\prime} \subset \mathbb{C} P^{2}$
make f transuense to $\mathbb{C} \rho^{\prime}$ and set $\Sigma=f^{-1}\left(\mathbb{C} \rho^{\prime}\right)$

$$
\begin{array}{rl}
H_{2}(x) & \cong H^{2}(X) \\
\downarrow f_{*} & \uparrow f^{*} \\
H_{2}\left(G P^{2}\right) & \cong H^{2}\left(G P^{2}\right) \\
s^{\prime \prime} & \text { "Is } \\
\mathbb{Z} & \mathbb{Z} \\
\text { gen by }\left[\sigma^{\prime}\right] & \text { gen by P.D. [GP'] }
\end{array}
$$

so $P . D .(a)=f^{*}\left(P . D .\left[\subset P^{\prime}\right]\right)=P . D .\left[f^{-1}\left(\subset P^{\prime}\right)\right]$
ie $a=[\Sigma]$

Big2uestion: given $a \in H_{2}(X)$ what is the minimal genus of a surface $\Sigma c X$ such that $[\Sigma]=a$?
given $[\Sigma],\left[\Sigma^{\prime}\right] \in H_{2}\left(X^{4}\right)$
define $[\Sigma] \cdot\left[\Sigma^{\prime}\right]=$ signed count of points in $\Sigma \cap \Sigma^{\prime}$ (after they are made transverse)
exercise: $[\Sigma] \cdot\left[\Sigma^{\prime}\right]=\left\langle P \cdot D \cdot([\Sigma]) \cup P \cdot D_{1}\left(\left[\Sigma^{\prime}\right]\right),[x]\right\rangle$
so the "intersection pairing"

$$
H_{2}(x) x H_{2}(x) \rightarrow 飞
$$

and cup product pairing

$$
H^{2}(x) \times H^{2}(x) \rightarrow \mathbb{Z}
$$

are "dual"
in particular, by Poricaré Duality, it is non-degenerate
it is also symmetric and bilinear
denote it $Q_{X}: H_{2}(x) \times H_{2}(x) \rightarrow \mathbb{Z}$
Lemma 8:
If X is a 4 -manifold made with only 0,2 -handles (can also have 4 -handle) and A is the linking matrix of the attaching circles of the 2 -handles, then

$$
\mathrm{H}_{2}(x) \times \mathrm{H}_{2}(x) \rightarrow \mathbb{Z}
$$

is given by A in the basis A_{i} from lemma 5

Proof: recall $l k\left(L_{2}, L_{j}\right)=$ signed count $L_{i} \cap \tilde{\Sigma}_{j}$

$$
\begin{aligned}
& \text { but this }=\text { signed count } \Sigma_{i} \cap \tilde{\Sigma}_{j} \\
&=\text { signed count } \Sigma_{i} \cap \Sigma_{j} \quad \begin{array}{l}
\text { seifert surface }
\end{array} \\
& \quad \begin{array}{l}
\text { for } L_{i} \text { with interwin } \\
\\
\\
\text { pushed into } B^{4}
\end{array}
\end{aligned}
$$

$$
\text { so } A_{i} \cap A_{j}=\left(C_{i} \cup \Sigma_{i}\right) \cap\left(C_{j} \cup \Sigma_{j}\right)
$$

$$
=\tau_{i} \cap \Sigma_{j}=\operatorname{kk}\left(L_{i}, L_{j}\right)
$$

now for $A_{1} \cap A_{i}$ take $\left(C_{2} \cup \Sigma_{i}\right)$ and $C_{i}^{\prime}=$ parallel to C_{i}

since these link n_{i} times the surface Σ_{i}^{\prime} that glues to C_{2}^{\prime} intersects Σ_{i}, n_{2} times
$Q_{x}: H_{2}(x) \times H_{2}(x) \rightarrow \mathbb{Z}$ is an invariant of X in general, invariants of non-degenenate symmetric bilviear forms $Q: \mathbb{Z}^{r} \times \mathbb{Z}^{r} \rightarrow \mathbb{Z}$ are

1) $\operatorname{rank}(Q)=r$
2) type even if $Q(v, v)$ even $\forall v \in \mathbb{Z}^{r}$ odd otherwise
3) signature

$$
\begin{aligned}
& \sigma(Q)=b_{+}-b_{-} \\
& b_{ \pm}=\text {number of } \pm \text { eigen values }
\end{aligned}
$$

4) definiteness
Q is positive definite if $b_{-}=0$
negative definite if $b_{t}=0$
indefinite if $b_{+} \neq 0 \neq b_{-}$
Algebraic Facts:
5) Q even then $\sigma(Q)$ divisible by 8
6) Q odd indefinite $\Rightarrow Q \cong \oplus^{p}(1) \oplus^{2}(-1)$
7) Q even indefinite $\Rightarrow Q \cong \pm \oplus^{p} E_{8} \oplus^{q}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \quad q>0$
8) Q even definite \Rightarrow

$\sigma(Q)$	8	16	24	32	40	\cdots
$\#$ of Q	1	2	24	7107	$>10^{51} \ldots$	

lots!
5) Q odd definite $\Rightarrow \operatorname{even} \oplus\left(\pm \oplus^{p}(1)\right)$

Geometric Facts:

1) $x^{4}=X_{1} u_{\partial} X_{2}$ then $\sigma(x)=\sigma\left(x_{1}\right)+\sigma\left(x_{2}\right)$
(note X_{i} not closed, can still detiie $Q_{x_{i}}$ it is just not non-degenerate but still has signature)
2) $\sigma\left(x_{1}+x_{2}\right)=\sigma\left(x_{1}\right)+\sigma\left(x_{2}\right)$
(clear from 1))
3) $\sigma(-x)=-\sigma(x)$ (easy)

T reverse orientation
4) X closed oriented 4 -manifold then

$$
X=\partial w^{5} \Leftrightarrow \sigma(X)=0
$$

5) X closed, oriented, smooth 4 -manifold with $\pi_{1}=1$ and Q_{X} even, then $\sigma(X)$ divisible by 16 (Rokhlin's Th ${ }^{\text {m }}$ 1952)
6) If X is closed, onénted, smooth 4-manifold with $\pi_{1}=1$ and Q_{X} is definite, then $Q_{X}= \pm \oplus_{k}(1)$ (Donaldson 1983)
so the zoo of definite forms can be ignored when studying smooth 4 -manifolds!

Fact: Every closed orientable 3-manifold bounds a 4 -manifold $X=0$-handle 42 -handles where the framings are even
(proof is just Kirby calculus, but a bit long)
now let M be a homology 3-sphere
(ie. $H_{*}(M) \cong H_{*}\left(S^{3}\right)$)
let X be a 4 -manifold as in fact above with $\partial X=M$ since M a homology sphere Q_{X} is non-degenerate
\therefore Alg. fact 1$) \Rightarrow \sigma\left(Q_{x}\right)$ is divisible by 8
$\operatorname{set} \mu(M)=\sigma(X) / 8 \bmod 2$
lemma 9:
$\mu(M)$ is well-defined

Proof: need to see $\mu(M)$ is inclependent of X so let X, X^{\prime} be 2 such 4 -manifolds ne. $Q_{x}, Q_{x^{\prime}}$ even, simply connected, and $\partial x=\mu=\partial X^{\prime}$
let $w=x u_{m}-x^{\prime}$
W is a closed smooth 4 manifold with $\pi_{1}(w)=1$ and Q_{w} is even
\therefore Rokhlin (Geom. fact 5$)) \Rightarrow \sigma\left(Q_{M}\right)$ divisable by 16 that is $\sigma(Y)=\sigma(X)+\sigma\left(-x^{\prime}\right)=\sigma(X)-\sigma\left(X^{\prime}\right) \equiv 0 \bmod 16$ geom fact 1) geom fact 3)

So $\sigma(x) \equiv \sigma\left(x^{\prime}\right) \bmod 16$
and $\sigma(x) / 8 \equiv \sigma\left(x^{\prime}\right) / 8 \bmod 2$
$\mu(M)$ is called the Rokhlin invariant of M
example:

1) $P=$ Poincare homology sphere

$$
=()^{-1}=\underbrace{-2-2-2-2-2-2-2}_{\sigma=-8} \int_{-2}^{0} \int_{\sigma}
$$

so $\mu(P)=1$
note: this implies P does not bound a homology 3-ball!
Determining when a homology 3-sphere bounds a homology ball is a major area of study
2) $\mu\left(s^{3}\right)=0$
D. Kirby's Theorem
we are finally read to prove
Th m 10 (Kirby 1978):
manifolds obtained from two surgery diagrams in s^{3} with integer surgery coefficients are they are related by differmonphic \Leftrightarrow blowup ldown and handle slides

Proof: (\Leftrightarrow) we have already shown this in lemma I. 4 and the discussion after it
(\Rightarrow) let M_{1} and M_{2} be manifolds obtained from the surgery diagrams L_{1}, and L_{2}
let $\phi: M_{1} \rightarrow M_{2}$ be a diffeomorphism
let w_{i} be the 4 -manifold obtained from B^{4} by attaching 2 -handles to L_{i} i
so $\partial w_{i}=M_{i}$
wa upside down
set $N=w_{1} u_{i d}\left(\left(\partial w_{1}\right) \times[1,2]\right) u_{\phi}\left(-u\left(w_{2}\right)\right)$

exercise: 1) $\bigcirc^{+1} \cup 4$-handle $\cong \mathbb{C} p^{2}$
$0^{-1} \cup 4$-handle $\cong \overline{\mathbb{C P}}^{2}$
2) taking connect sum of closed 4 -manifolds corresponds to disjoint union of their handle pictures
3) $\sigma\left(\mathbb{C} p^{2}\right)=1, \sigma\left(\overline{\mathbb{C}}^{2}\right)=-1$
so by taking the connect sum of N with $\mathbb{C} P^{2}$ s or $\mathbb{C P}^{2}$ s we can arrange $\sigma(N)=0$
note: we can do this in W_{1} part so we change the surgeny picture for M, by blow ups
by Geometric Fact 4) we know $\exists 5$-manifold x such that $\partial x=N$
\exists Morse function $f: M \rightarrow \mathbb{R}$ s.t.

- $f /_{\partial w_{1} \times[0,1]}: \partial w_{1} \times[0,1] \rightarrow[0,1]$ is projection
- $f^{-1}(1)=w_{1}$
- $f^{-1}(2)=w_{2}$
- no 0 - and 5 -handles

can think of X as $W, \times[1,1+\varepsilon] \cup(1-h)$'s $u(2-h)$ is u $(3-h)$'s $v(4-h)$'s just as in 4D we can exchange 1 -handles for

2-handles without changing boundary similarly we can exchange 4-handles for 3-handles without changing bound ar so can assume X only has 2 -and 3-handles
let the 2 -handles be in $f^{-1}([1,1+2 \varepsilon])$ and
the 3 -handles be in $f^{-1}([2-2 \varepsilon, 2])$
and set $W=f^{-1}(1.5)$
we get $f^{-1}([1,1.5])$ from $w_{1} \times[1,1+\varepsilon]=f^{-1}([1,1+c])$
by attaching 2 -handles:

$$
h^{2}=D^{2} \times D^{3} \text { along } \partial-h^{2}=\left(\partial D^{2}\right) \times D^{3}
$$

on the level of the boundary, we remove $S^{1} \times D^{3}$ and glue in $D^{2} \times S^{2}$
since the attaching sphere $S^{\prime} x\{0\}$ in $W, x\{1+\varepsilon\}$ (π in 14,) $=1$) (and in dian 4 , homotopy is null-homotopic (and in dim 4 , homotopy
implies isotopy) can assume if bounds a dish in $B^{4} \subset W_{1}$ there are 2 framings $\left.\pi_{1}(s o l 3)\right)=\mathbb{Z} / 2$ exercise:

1) this changes $W_{1} x\{c+\varepsilon\}$ by connect sum with $S^{2} \times S^{2}$ or $S^{2} \tilde{x} S^{2}$
\uparrow twisted s^{2} bundle over S^{2}
2)

() 04 -handle $=5^{2} \times 5^{2}$
(e) $\cup 4$-handle $=S^{2} \tilde{x} S^{2}$
thus if L, is a handle diagram for w_{1}
 is a link diagram for W
note: $\cdot \partial W=M_{1}=\partial W_{1}$

- Q ${ }^{0} \xrightarrow[\text { down }]{\text { blow }} O^{-1} \xrightarrow[\text { down }]{\text { blow }} \varnothing$
- QP ${ }^{\circ} \xrightarrow[\text { bp }]{\text { blow }} C_{1}^{1} O_{1}^{-1} \xrightarrow[\text { down }]{\text { blown }}$ down
so surgery diagram L_{1} for $\mu_{1}=\partial w_{1}$ is related to the surgery diagram L_{1} 'for ∂W by blowups and blow downs turn $f^{-1}([1,5,2])$ upside down and we see it is built from $\omega_{2} \times[1,1+\varepsilon]$ by attaching 2-handles so L_{2} is related to a surgery diagram L_{2}^{\prime} for ∂w by blowup and blowdouns now we hare two handle body diagrams for W $L_{1}{ }^{\prime}$ and L_{2}^{\prime}
these correspond two Morse functions

$$
f_{2}: W \rightarrow[-1,1]
$$

with only one wides 0 crit pt in $(-1,0)$ and index 2 critical points in $(0,1)$

Cerf theory: $\exists 1$-parameter family of functions

$$
f_{t}: W \rightarrow[-1,1] \quad t \in[1,2]
$$

from f_{1} to f_{2} such that all f_{t} are Morse with distinct critical values except for a finite number of t 's at these t 's
(1) 2 critical points have same value
(2) birth-death of critical points pairs: either 0,1 pair.

1,2 pair
2,3 pain.
3.4 pair
consider the Cerf graphic: plot the critical values of f_{t} in $[1,2] \times[-1,1]$

(\#'s are index of critical points)
there are "moves" you can make to a Cerf diagram Beak move

Independence move

beak isotopy

triangle move

Dovetail move

cancellation move

exencose: can assume graphic looks like

Claim: can elliminate extra inches 0 critical points lvideed: consider upper most looks like
 add concelling $1-2$ pair

so we remove one
just keep doing this
similarly, can remove all index 4 -critic al points exenccsé: can arrange all index 1 -critical ports

now just push "beaks" of edge to get

recall we can replace Θ 1-handle with $O_{2-h a n d l e}^{0}$ just do this for all f_{t} at once to get

exencié: we know
doesnt change ∂W, but show this change sends W to $W \# S^{2} \times s^{2}$
so the links L_{1}^{\prime} and L_{2}^{\prime} corresponding to f_{1} and f_{2} are changed by blowups and blow downs we can similarly get rid of 3-handles
so we have

recall, a 2-handle seen through Morse fin is

the red is the core extended by gradient flow If the red (called the unstable manifold of the critical point) doesn't hit the green of
another critical point then it reaches

$$
\partial h^{0}=s^{3}
$$

so if nome of the red hit green then get a link in S^{3}, this is the handlebody diagram!

Smale: for all but finitely many t, the "red" and "green" are disjoint
and at those finitely many, the red hits the green in one point

such points give handle slides!
So as t increases the lvi L_{t}^{\prime} associated to f_{t} is isotoped until a handle slide so a finite \# of handle slides from $L_{1}{ }^{\prime}$ to L_{2}^{\prime} and we are done

